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Development of a Linearized Unsteady Aerodynamic

Analysis for Cascade Gust Response Predictions

Summary

A method for predicting the unsteady aerodynamic response of a cascade of airfoils to

entropic, vortical, and acoustic gust excitations is being developed. Here, the unsteady

flow is regarded as a small perturbation of a nonuniform isentropic and irrotational steady

background flow. A splitting technique is used to decompose the linearized unsteady velocity

into rotational and irrotational parts leading to equations for the complex amplitudes of the

linearized unsteady entropy, rotational velocity, and velocity potential that are coupled only

sequentially. The entropic and rotational velocity fluctuations are described by transport

equations for which closed-form solutions in terms of the mean-flow drift and stream functions

can be determined. The potential fluctuation is described by an inhomogeneous convected

wave equation in which the source term depends on the rotational velocity field, and is

determined using finite-difference procedures. In this report the analytical and numerical

techniques used to determine the linearized unsteady flow are outlined. Results are presented

to indicate the status of the solution procedure and to demonstrate the impact of blade

geometry and mean blade loading on the aerodynamic response of cascades to vortical gust

excitations. The analysis described herein ledds to very efficient predictions of cascade

unsteady aerodynamic response phenomena making it useful for turbomachinery aeroelastic

and aeroacoustic design applications.



1. Introduction

Destructive forced vibrations can occur in turbomachinery blading when a periodic aero-

dynamic force, with frequency close to a system natural frequency, acts on the blades. A

primary source of such vibrations is the aerodynamic interactions between adjacent blade

rows, of which the two principal types are traditionally referred to as potential-flow interac-

tion and wake interaction. The former results from the variations in the velocity potential

or pressure field associated with the blades of a given row and their effect on the blades

of a neighboring row moving at a different rotational speed. This type of interaction is of

serious concern when the axial spacings between neighboring blade rows are small or flow

Mach numbers are high. Wake interaction is the effect upon the flow through a blade row

of the wakes shed by one or more upstream rows. This type of interaction can persist over
considerable axial distances.

The theoretical unsteady aerodynamic analyses that have been developed to predict the

aeroelastic behavior of turbomachinery blading, i.e., the onset of blade flutter and the am-

plitudes of forced blade vibration, have, for the most part, been based on the following

simplifying assumptions: the blades of an isolated two-dimensional cascade are considered

and the effects of neighboring structures are represented via nonuniform inlet and exit con-

ditions, viscous effects are usually neglected, and the unsteady fluctuations are assumed to

be sufficiently small so that a linearized treatment of the unsteady flow is justified. Then, to

determine the aeroelastic characteristics of the blading, the resulting analyses must be capa-

ble of predicting the unsteady loads that act on the blades and arise from various sources of

excitation, i.e., prescribed structural (blade) motions and external aerodynamic excitations.

The latter include variations in total temperature and total pressure (entropy and vortic-

ity waves) at inlet and variations in static pressure (acoustic waves) at inlet and exit. In

particular, for blade flutter applications it is only necessary to predict the unsteady loads

resulting from prescribed blade motions, while for forced response applications the unsteady

loads due to incident entropic, vortical and acoustic disturbances are also required.

Until recently, the unsteady aerodynamic analyses that have been available for turboma-

chinery aeroelastic applications were based on classical linearized theory (for an informative

review see Whitehead Ref. [1]). Here, the steady and first-harmonic unsteady departures

of the flow variables from their uniform free-stream values are regarded as small and of the

same order of magnitude leading to uncoupled, linear, constant-coefficient boundary-value

problems for the steady and unsteady disturbances. Thus, unsteady solutions based on

the classical linearization are essentially restricted to cascades of unloaded flat-plate blades

which operate in an entirely subsonic or an entirely supersonic environment. Very efficient

semi-analytic solution procedures have been developed for two-dimensional attached subsonic

[2-4] and supersonic [5-8] flows and applied with some success in turbomachinery aeroelastic

(and aeroacoustic) design calculations. It should also be mentioned that extensive efforts,

as reviewed in Ref. [9], have been made to develop three-dimensional unsteady aerodynamic

analyses based on the classical linearization for turbomachinery aeroelastic and aeroacoustic

design applications.

Because of the limitations in physical modeling associated with the classical linearization,

more general two-dimensional inviscid linearizations are being developed [10-12]. These
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accountfor the effectsof important designfeaturessuchasreal bladegeometry,meanblade
loadingand operation at transonicMachnumberson the unsteadyaerodynamicresponseof a
cascade.Here,unsteadydisturbancesareregardedassmall-amplitudeharmonic fluctuations
relative to a nonuniform steady (in acoordinateframeattachedto the blade row) background
flow. The steadyflow is determinedasa solution of a nonlinear inviscid equationset, and the
unsteadyflow is governedby asetof linear equationswith variable coefficientsthat dependon
the underlying steadyflow. This type of analytical modelhasreceivedconsiderableattention
in recent years,and we refer the reader to the recent review articles by Verdon [13,14]for
a detailed description of the theoretical formulation. Useful solution algorithms for the
nonlinear steadyproblem are currently available, and solution methods [15] for linearized
unsteady perturbations of isentropic and irrotational background flows have reached the
stagewhere it is appropriate to considerthem for designapplications. Unfortunately, such
methods have,for the most part, only beendevelopedfor the prediction of unsteadyflows
driven by prescribedblade vibrations and/or incident acousticdisturbances. Recently,Hall
and Crawley [12] used the linearized Euler equations to describe unsteady cascadeflows
causedby wake (entropic and vortical) excitations. A linearized Euler technique, while
neededto accountfor strong shockand rotational mean flow phenomena,is not asefficient
as a linearization basedon the isentropicand irrotational meanflow assumptions.

Thus, under the presenteffort, an analysisand computercode (LINFLO) hasbeendevel-
oped to predict linearized unsteady cascade flows containing entropic and vortical, as well as

acoustic, perturbations of isentropic and irrotational mean or steady flows. In this analysis

the Goldstein velocity decomposition [16,17] is employed to split the linearized unsteady

velocity into rotational and irrotational components. This decomposition leads to a very

convenient description of the linearized unsteady perturbation -- one in which the equations

that govern the entropy, rotational velocity and velocity potential fluctuations are coupled

only sequentially. In addition, closed form solutions can be determined for the entropy and

rotational velocity fluctuations in terms of the drift and stream functions of the underlying

steady flow. Finally, the unsteady potential is governed by an inhomogeneous wave equation

in which the source term depends only upon the rotational velocity field. Finite-difference

solution procedures for this equation are already available [18,19]. The Goldstein splitting

introduces singularities in the rotational and irrotational unsteady velocities along the sur-

faces of blades and their wakes. Thus, a modification introduced by Atassi and Grzedzinski

[20] has been employed in the present analysis to remove the singular behavior, thereby per-

mitting an accurate numerical evaluation of the entropy and rotational velocity fluctuations

and an accurate numerical resolution of the wave equation that governs the unsteady velocity

potential.

The linearized unsteady aerodynamic analysis is described in this report and demon-

strated via application to a number of representative cascade configurations. It has been

implemented into an existing computer code LINFLO, which can be used to predict the

pressure response of realistic cascade configurations to prescribed external aerodynamic (i.e.,

incident entropic, vortical and acoustic disturbances) and structural (blade motions) exci-

tations. Because it permits a very efficient and economical prediction of cascade response

to aerodynamic and structural excitations, the LINFLO code is suitable for implementation

into turbomachinery aeroelastic and aeroacoustic design prediction systems.



2. Physical Problem

We consider the time-dependent adiabatic flow, with negligible body forces, of an inviscid

non-heat-conducting perfect gas through a two-dimensionM cascade such as the one shown

in Figure 1. The mean or steady-state positions of the blade chord lines coincide with the

line segments r/ = _tan@ +mG, 0 <_ _ <_ cosO, m = 0, 4-1, -{-2, ... , where _ and

7/ are coordinates in the cascade axial and circumferential directions, respectively, m is a

blade number index, O is the cascade stagger angle, and G is the cascade gap vector which

is directed along the _/-axis with magnitude equal to the blade spacing. In the present

discussion all physical quantities are dimensionless. Lengths are scaled with respect to

blade chord, time with respect to the ratio of blade chord to upstream free-stream flow

speed, density and velocity with respect to upstream free-stream density and flow speed,

respectively, pressure with respect to the product of the upstream free-stream density and

the square of the upstream free-stream speed, and entropy with respect to the specific heat

of the fluid at constant pressure.

The time-dependent or unsteady fluctuations in the flow can arise from one or more

of the following sources (Figure 2): blade motions, upstream and/or downstream acoustic

disturbances which carry energy toward the blade row, and upstream entropic and vortical

disturbances which are convected through the blade row. These excitations are each assumed

to be of small amplitude, periodic in time and to occur at temporal frequency w. The external

aerodynamic excitations are also spatially periodic, while the structural excitation is periodic

in the cascade circumferential or _/-direction. For example, we consider blade motions of the
form

7_(x -{-rnG, t) = ne{r(x)exp[i(wt -_-mcr)]}, x e B, (2.1)

where 7_ measures the displacement of a point on a moving blade surface relative to its

mean or steady-state position, x is a position vector, t is time, r is a complex displacement-

amplitude vector, a is the phase angle between the motions of adjacent blades, Re{ } denotes

the real part of { } and B denotes the reference (m -- 0) blade surface. Incident disturbances
are of the form

g(x,t) = Re{s_ooexp[i(__oo.x+wt)]}, _ < __ , (2.2)

_(x,t) = Re{___exp[i(e__o_.x+wt)]}, _ < __ , (2.3)

and

/Sx(x,t) = Re{pi,:_oexp[i(_:_.x +wt)]}, _ X _:F- (2.4)

Here s__, _-oo and Pr,R:_o are the complex amplitudes of the incident entropic, vortical and

pressure fluctuations, _(x,t), _(x,t) and p/(x,t), respectively, far upstream (-oc) and far

downstream (+oo) from the blade row. The entropic and vortical excitations originate far

upstream of the blade row (_ < __); the incident pressure disturbances, iSx(x, t), originate far

upstream and/or far downstream (_ > _+) and carry energy towards the blade row. We use

the symbol _ to denote the wave number of an incident disturbance. The interblade phase

angle, a, of an incident disturbance is given by _:_ • G. Also, the temporal frequency and

wave number of an incident entropic or vortical disturbance are related by w = -___. V__,

where V-oo is the uniform relative inlet velocity, but a more complicated relationship exists

between w and ___ for an incident pressure disturbance (e.g., see [21]). In the present



investigation we are concernedprimarily with determining the unsteady pressureresponse
of cascadessubjected to incident entropic and vortical excitations.

In the absenceof unsteadyexcitation the flow beyondsomefinite distanceupstream (say
< __) from the blade row is assumedto beat most a small irrotational steadyperturbation

of a uniform freestream. In addition, weassumethat the unsteadyflow remainsattached to
the blade surfaces;therefore,thin vortex sheetsor unsteadywakesemanatefrom the trailing
edgesand extend downstream. Finally, any shocksthat might occur are assumedto be of
weak to moderate strength and have small curvature. Thus, changesin the entropy and
vorticity of a fluid particle as it passesthrough shocksare regardedas negligible.

The fluid motion is governedby differential forms of the mass,momentum and energy
conservationlawsfor an inviscid perfect gas (i.e., the Euler equations) in regionswherethe
flow variables are continuous and correspondingjump conditions at surfacesacrosswhich
the flow variablesare discontinuous,i.e., at vortex-sheetwakesand at shocks.In continuous
regionsthe energyequation canbe replacedby the requirement that the entropy following
a fluid particle must remain constant. In addition to the foregoing field equations and
jump conditions, the attached flow assumption requires that the unsteady flow must be
tangential to the moving blade surfaces. Finally, information on the uniform inlet and
exit flow conditions, the entropic and vortical fluctuations at inlet and the static pressure
disturbances at inlet and exit that carry energy toward the blade row must be specified.
The remaining steady and unsteadydeparturesfrom the uniform inlet and exit conditions
(i.e., steady pressurevariations, entropic and vortical fluctuations at exit and unsteady
pressurefluctuations due to outgoing acoustic waves)must be determined as part of the
time-dependentsolution.

The foregoingunsteady aerodynamicproblem is a formidable one. It involvesa system
of nonlinear time-dependentpartial differential equationsalongwith conditions imposedon
moving blade,wakeand shocksurfacesin which the instantaneouspositionsof the wakesand
shocksmust, in principle, be determined aspart of the solution. Becauseof thesefeatures
and the prohibitive computational expensethat wouldbe involvedin obtaining the unsteady
aerodynamicresponseinformation neededfor turbomachinery aeroelasticresponsepredic-
tions, the usualapproachis to examinelimiting formsof the full governingequationswith the
intention of providing efficient theoretical analysesfor predicting the onsetof blade flutter
and the amplitudes of the vibratory blademotions causedby external aerodynamicexcita-
tions. One suchapproach,in which the unsteadyflow is regardedasa small perturbation of
a nonuniform isentropicand irrotational meanflow, is describedbelow.



3. Unsteady Perturbations of a Potential Mean Flow

For small amplitude unsteady excitations, i.e., I_-ool, etc., ,-_ O(e) << 1, the time-

dependent flow can be regarded as being a small perturbation of an underlying nonlinear

mean or steady background flow. Thus, for example, we can set

V(x,t) = V(x) + _(x,t) +... , (3.1)

where V(x) is the local mean velocity and 9(x, t) is the first-order (in e) unsteady velocity.

Then, as a consequence of our assumptions regarding shocks and the flow far upstream of

the blade row, the background flow will be isentropic and irrotational; i.e., V = _7¢, where

is the steady velocity potential. The field equations that govern the underlying steady

potential flow follow from the mass and momentum conservation laws and the isentropic

relations for a perfect gas and are given b:_

v. (zv¢)=0 (3.2)
and

(M_o_A)2 = _ .y-1 = (3"M2_oop)(.y-_)/.y = 1 3' - 1 2 2
M_'oo[(V# ) - 1], (3.3)

where M, A, p and P are the local Mach number, speed of sound propagation, density and

pressure, respectively, in the mean or steady background flow and 3' is the specific heat ratio

of the fluid.

Surface conditions for this zeroth-order or steady flow apply at the mean positions, B,_,

W,, and Shin,=, of the blade, wake and shock surfaces, where the subscript n refers to the nth

shock associated with the ruth blade. Blade mean positions are prescribed, but the mean

wake, i.e., the stagnation streamlines downstream of the blade row, and shock positions must

be determined as part of the steady solution. Since, by assumption, the flow remains attached

to the blade surfaces, a flow tangency condition applies at such surfaces. In addition, mass

and tangential momentum must be conserved across shocks, and the steady pressure and

normal velocity component must be continuous across blade wakes.

Numerical procedures for determining two-dimensional steady potential flows through

cascades have been developed extensively, e.g., see [22,23], particularly for flows with subsonic

relative inlet and exit Mach numbers (i.e., M+oo < 1). In such calculations far-field boundary

conditions are imposed at axial stations placed at finite distances upstream and downstream

(i.e., at _ = _+) from the blade row, where linearized solutions describing the behavior of the

steady potential can be matched to a nonlinear near-field solution. In addition, conditions

are often imposed at blade edges (e.g., a Kutta condition at sharp trailing edges) in lieu

of prescribing an inlet and/or an exit free-stream property. Finally the usual practice is to

solve the conservative form of the mass-balance equation (3.2) throughout the entire fluid

domain while allowing for a discontinuity in the velocity potential across arbitrary periodic

lines which emanate from the blade trailing-edge points and extend downstream. Thus,

the shock- and wake-jump conditions, mentioned above, are usually not imposed explicitly

in such steady-flow calculations. Instead, shock phenomena are captured through the use

of special differencing techniques; the wake conditions are satisfied implicitly because, in a

two-dimensional steady potential flow, the fluid properties are continuous and differentiable

across wakes. The mean wake and shock locations are determined a posteriori from the

resulting steady solution.
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3.1 Linearized Unsteady Equations

The field equations that govern the first-order unsteady perturbation of a nonlinear isen-

tropic and irrotational steady flow are determined from the full nonlinear time-dependent

mass, momentum and entropy-transport equations and the thermodynamic equation relating

the entropy, pressure and density of a perfect gas. After performing some straightforward

algebra (see [13,14]), we obtain a system of differential equations for the first-order entropy

(_), velocity (9) and pressure (/5), respectively. These equations can be cast in a very conve-

nient form by introducing the Goldstein velocity decomposition [16,17]. Thus, after setting

= _7¢ + 9R, where the unsteady potential ¢ governs the unsteady pressure fluctuation

through the relation _ = -_D¢/Dt and the rotational velocity, vR, is divergence free far

upstream of the blade row, i.e., V • vR = 0 for 4 < __, we find that the field equations that

govern the unsteady flow variables can be written in the form

b_

D----/= 0 (3.4)

D

_(vR- _v¢/2) + [(eR- _v¢/2) •v]v¢ = 0 (3:5)
and

b ,__b_, -'v ._(_ _-7) - _ -'v. (_v_) = _ •(_R) (3.6)

Here D/Dt = O/Ot + V¢ • V is a mean flow convective derivative operator. In general, we

require a solution to the foregoing system of field equations subject to the condition of flow

tangency at blade surfaces, jump conditions across shocks and blade wakes that are based

on the fluid-dynamic conservation laws, and appropriate conditions far upstream and far
downstream from the blade row.

Surface Conditions

As a consequence of the small unsteady-disturbance approximation, conditions on the

linearized unsteady perturbation at moving blade, shock and wake surfaces can be imposed

at the mean positions of these surfaces, with the mean Wake (W,0, i.e., the downstream

stagnation streamlines, and shock (Shm,_) locations being determined from the nonlinear

steady solution. In particular, the following conditions (see [13] and [14]) apply. The first-

order flow tangency condition has the form

(re + ¢¢R)" n = [07_/Ot + (V¢. 7")(7". V)77.- (7_- V)V¢].n, x e Bin. (3.7)

The wake-jump conditions require that the fluid pressure and the normal component of the

fluid velocity be continuous across blade wakes, i.e.,

[D¢/Dt] =0, x E Win, (3.8)

and

[V¢+_rR]].n=0, x E Win, (3.9)



respectively.Finally, if we neglectchangesin entropy and rotational velocity acrossshocks,
the conservationlawsfor massandtangential momentumyield the following linearizedshock-
jump conditions:

[fi(Vq_- A-2D_¢V@)] • n + [_]_rR.n = [Z][alat + (re. _-)r. V](Ta. n)
Dt

+ (7_.n)v.V([fi]V¢.v),x e Shm,n

and, for a shock that terminates in the fluid,

[¢]] = -77.. n[V_]] • n ,x e Shm,,_ .

(3.10)

(3.11)

Equations (3.10) and (3.11) provide two relations for determining the jump in the unsteady

potential, [¢], at the mean position of a shock and the shock displacement normal to the

mean shock locus, 7_ • n. In the foregoing equations n and 7" are unit vectors normal and

tangential, respectively, to a surface and directed such that n x 7" points out from the page;

the symbol _[ ]] indicates the jump or change in a quantity at a surface at which the flow
variables are discontinuous.

Far-Field Conditions

We have assumed that the potential mean or steady flow is at most a small (i.e., of

O(e)) perturbation from a uniform stream both far upstream (_ < __) and far downstream

(_ > _+) from the blade row. Therefore, in these regions, the first-order (in e) unsteady field

equations can be reduced to constant coefficient equations for which general solutions can be

determined analytically (see [21]). Corresponding particular solutions are then determined

from prescribed inlet and exit information and by matching the far field analytical solutions

to a near-field numerical solution. For example, it follows from (3.4) and (3.5) that the

entropy and rotational velocity fluctuations far upstream (_ < __) and far downstream

(_ > _+) of the blade row must be of the general form

_(x,t) = _:,:oo(x- V_:o_t), _ < _: (3.12)

and

"_R(x,t) = _R,t:_(x- V_ot), _ < _: . (3.13)

The far upstream entropy and rotational velocity fluctuations are prescribed, c.f. (2.2) and

(2.3), and therefore

_(x,t) = _-oo(x - V-oot) = Re{s-oo exp[i,__oo- (x - V__t)]}, for _ < __ ,

and

(3.14)

_rR(x,t)=_rR,-oo(x--V-_t)=Re{vR,_ooexp[i__oo.(x--V__t)]} for _<__. (3.15)

The velocity potential fluctuation in the far upstream and far downstream regions de-

pends upon the acoustic excitation, the acoustic response of the cascade and, in the far



downstreamregion, the vortical fluctuation associatedwith the rotational velocity and the
vorticity shedat the blade trailing edgesand convectedalong the blade wakes.We set

= + ;bR(x,t) for X (3.16)

where CE is the potential due to the acoustic or irrotational excitation at inlet and exit, and

CR is the potential associated with the acoustic response of the blade row to the imposed

unsteady excitation and the far downstream vortical fluctuation. The potential component

CE is a solution of (3.6), with steady flow properties set at their free-stream values, which is

subject to the requirement that acoustic excitations must either attenuate as they approach

the blade row or propagate and carry energy towards or along the blade row. We find that

CE(x,t) : Re{¢i,Tooexp[--XToo _ -F i(wt + _,,:Foo_/)]} for _ < _:F (3.17)

where the ¢Z,:Foo are the complex amplitudes of the potential associated with incident pressure

waves, i.e.,

¢l,:Foo --1= pToo[X oov oocos - + (3.18)

nn,_:_o = G-lo " and the X,,:Foo depend upon the inlet/exit free-stream conditions, the cas-

cade blade spacing and the temporal frequency and interblade phase angle of the unsteady

excitation. Analytic solutions to (3.6) for the potential component ¢R which satisfy the re-

quirements that acoustic response disturbances must either attenuate with increasing axial

distance from the blade row or propagate carrying energy away from or parallel to the blade

row and vorticity must be convected downstream are given in Ref. [21]. These solutions con-

tain constants, i.e., the Fourier amplitudes of the continuous acoustic and rotational velocity

responses and the complex amplitudes of the discontinuities in the potential, [¢]aef, and

rotational velocity, [[vR]Ref, at a reference wake location, that are determined by matching

the far field analytic solutions to near field numerical solutions.

3.2 Discussion

The foregoing linearized equations account for the effects of blade geometry, mean blade

loading and transonic, including moving shock phenomena, on the unsteady fluctuations

arising from small-amplitude time-dependent excitations of nonuniform isentropic and irro-

tational steady background flows. The unsteady equations are linear and contain variable

coefficients that depend upon the underlying steady flow.

As a consequence of the Goldstein velocity splitting, the linearized unsteady equations

are coupled only sequentially. Thus, the entropy fluctuation is independent of the unsteady

velocity and depends, therefore, only upon the the prescribed upstream entropic disturbance.

The rotational velocity fluctuation is independent of the unsteady potential and depends only

upon the entropy fluctuation and the prescribed upstream rotational velocity disturbance.

The unsteady potential fluctuation depends upon the entropy and rotational velocity fluctu-

ations, the prescribed blade motion, and the prescribed upstream and downstream pressure

excitations. Note that, if either a prescribed blade motion (the flutter problem) or an inci-

dent acoustic disturbance is the only source of unsteady excitation, then _ -- vn - 0 and



only a singlefield equation, i.e., (3.6) with right-hand-sideset equal to zero,must be solved
to determine the first-order unsteadyflow field.

Numerical resolutions of the linearizedunsteadyproblem are required to determine the
aerodynamicresponseinformation neededfor aeroelasticand aeroacousticpredictions, i.e.,
the unsteady pressuresand global unsteady airloads acting at the blade surfacesand the
unsteady pressurefield. Becauseof the cascadegeometry and the assumedform of the
unsteadyexcitations (i.e., harmonic in t and r/) , the first-order or linearized unsteady flow

properties must be harmonic in time, e.g.,

t) = (3.19)

In addition, they must satisfy a circumferential periodicity condition, e.g.,

v(x + raG) = v(x) . (3.20)

Thus, a numerical resolution of the time-independent linearized unsteady flow problem is

required only over a single extended blade-passage region of the cascade. Since analytic

far-field solutions have been determined, the numerical solution domain can be restricted

further to a single extended blade-passage region of finite extent in the axial direction, as

shown in Figure 3.

Numerical solutions for the complex amplitudes (s, vn and ¢) of the unsteady entropy,

rotational velocity and velocity potential can be determined in order. Since the entropy

and rotational velocity fluctuations are governed by convection equations, solutions for these

quantities can be determined in terms of the prescribed upstream entropy and rotational

velocity distributions. The potential is governed by an elliptic equation, and therefore,

boundary condition information must be supplied on the entire boundary of the extended

blade-passage solution domain, i.e., on the surfaces of the blades, the stagnation streamlines

upstream and downstream (wakes) of the blade row and the far-field boundaries _ = _t:"
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4. Entropy and Rotational Velocity Fluctuations

As demonstrated by Goldstein [16], closed form solutions for the entropy and rotational

velocity fluctuations throughout an extended blade passage region can be determined in

terms of the drift (A) and stream (_) functions of the steady background flow. The former

measures the time required for a fluid particle to traverse the distance between points on a

streamline. For the present application we define the drift and stream functions as follows

and

f V-ldr_
A(X) : A(x_) "Jr- _+eN[O(x)-_(x_)]/(gv)__

(4.1)

f• (x) = _(x_) + fi(ez x V). dr, (4.2)

In equations (4.1) and (4.2), x_ is the position vector to the point of intersection (__,r]_)

of the reference blade stagnation streamline and the axial line _ = __, ez is a unit vector

that points out from the page, eN = e_ x V-oo/V-oo is a unit vector normal to the upstream

free-stream velocity, dr_ is a differential element of arc length along a streamline, and dr is

a differential vector tangent to the path of integration in (4.2). The value of A at a given

point x is determined by performing the integration in (4.1) along the streamline that passes

through x, whereas _(x) is independent of the path used to evaluate the line integral in

(4.2).
We introduce the vector

X- V_oot = V_oo(A- t)eT + g_eN/(fiV)-oo , (4.3)

where the functions A -- t and • are independent material properties (or Lagrangian coor-

dinates) of the steady background flow, and eT = V-oo/V-oo is a unit vector pointing in

the direction of the upstream free-stream velocity. Furthermore, we choose the constants

A(x_) and _(x_) so that X --_ x, as _ ---, -oc. It follows that any arbitrary scalar or vector

function, say ._, of (X - V_oot) is convected without change by the steady background flow

and that 9c" is a function of x - V_oot far upstream of the blade row, i.e.,

.T'(X - V_oot) -- 0 and lim .T'[(X- V_oot)] = .T'(x- V_o_t) .
_-"+--OO

(4.4)

The foregoing considerations permit us to write immediately the solution to the entropy

transport equation (3.4) which satisfies the upstream condition (3.14) as

a(x,t) = a_oo[(X-V__t)] = Re{s_ooexp[i__oo.(X-V_oot)]} = Re{s(x)exp(iwt)}, (4.5)

where s(x) = s-oo exp(it¢_o_ • X) is the complex amplitude of the first-order entropy fluctu-

ation, and w = -t¢__ • V__ is the temporal frequency of the unsteady motion.
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4.1 Rotational Velocity

The rotational velocity fluctuation can also be expressed in terms of the drift and stream

functions of the steady background flow and, in this case, the prescribed upstream entropy

and rotational velocity disturbances. For a two-dimensional, irrotationM, steady background

flow, the general solution for the rotational velocity is

_R= (v ®x). A(x- v__t) + 2v¢, (4.6)

where ® denotes the tensor or dyadic product and ,_t is an arbitrary vector function of

X - V_oot. This can be verified by substituting (4.6) into the transport equation (3.5) and

performing the required algebra.

The particular solution for vR that satisfies the far upstream condition (3.15) can then

be obtained by setting

N

.a(x- v_oot) = v_,_o_(X- v_o_t)- __oo(X- v_o_t)v_oo/2, (4.7)

where J__(X- V-oot) is defined in (4.5) and

;,R,__(x - v__t) = R_{vR,__exp[i,___. (X - V__t)]}. (4.8)

After combining equations (4.5) through (4.8), we find that the rotational velocity fluctuation

is given by

_'R(x, t) = Re{IV ® X. ,tt_oo + s_ooV O /2] exp[ite_oo . (X - V_oot)]} = Re{vR(x) exp(iwt) },

(4.9)

where .,4-oo = vn,-oo - s-ooV_oo/2 and vR(x) is the complex amplitude of the unsteady

rotational velocity.

4.2 Modification to the Goldstein Velocity Splitting

At this point we have expressed the entropy and rotational velocity fluctuations in terms

of the mean flow drift and stream functions. Therefore, these fluctuations and the source

term, fi-l_,. (fi_'R), that appears in the field equation for the unsteady potential (3.6) can be

evaluated once the drift and stream functions, and their derivatives, are determined from the

solution for the underlying steady flow. However, as pointed out by Goldstein and later by

Atassi and Grzedzinski[20], if the steady background flow has leading-edge stagnation points,

the rotational velocity, and hence, the irrotational velocity, V¢ [c.f. (3.7) and (3.8)], will

be singular along blade and wake surfaces. Such behavior is a consequence of the singular

behavior of the drift function, i.e., A --_ a0 in n as n _ 0, where n is the normal distance

from a blade or wake surface and a0 is a constant which describes the behavior of the flow

in the vicinity of a stagnation point.

Although the physical velocity _ = _'R + V¢ must be regular, singularities in the compo-

nent velocities _'R and We impose serious difficulties on the numerical field methods needed

to predict the unsteady potential. Therefore, Atassi and Grzedzinski proposed the following
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velocity decompositionto eliminate the singular behaviorfrom the rotational and irrotationM
componentvelocities:

where¢* is a pressure-lessor convectedpotential, i.e., D¢*/Dt = 0. The rotational velocity

_ satisfies the same transport equation, i.e., (3.5), as _rn, and the velocity potential ¢'

satisfies the same field equation, (3.6), as ¢. Furthermore, if one chooses q_* carefully, _

will be regular on blade and wake surfaces. In particular, if we set

¢*---- Re { [-iw-1¢4-_ • V-oo + F(q2)] exp[i___. (X-- V-oot)]} , (4.11)

the rotational velocity, _r_, is given by

{[ ] }_r_ = Re V ® X. i___F + c2 + -_ _7_ + s_ooV_5/2 exp[i___. (X- V__t)]

= Re{v_(x)exp(iwt)},

(4.12)

where c2 = -(fi__w)-l(__oo x .A-oo) • ez. F(_) is a complex function that depends upon,

among other things, the behavior of the mean flow in the vicinity of a stagnation point. It

can be chosen in such a way that the rotational velocity vanishes on blade and wake surfaces.

In particular, for two-dimensional cascade flows Atassi and Grzedzinski set

F(_) = (m-oo x ___). ezGcosf___
2_r(w/V__)(1 - iaow)

sin !27r[_(x) - _(x_)]

a(_Y)_oo cos f_-oo
(4.13)

This choice of F eliminates the singular behavior of the rotational velocity. Indeed, ,7,_ - 0

on blade and wake surfaces. However, the potential equation source term, p-iV • (p R), is

still singular at these surfaces.

Equations (4.5) and (4.12) relate the complex amplitudes of the first-order unsteady

entropy (s) and rotational velocity (v_) fluctuations to the prescribed amplitudes, s__ and

vR,-oo, and wave number, _-oo, at inlet, and to the velocity, drift function and stream

function of the steady background flow. Note that v_ depends upon A and _ and the

first partial derivative of these functions. Therefore, the unsteady vorticity, _ = V x v_,

and the source term that appears in the potential equation for ¢% i.e., _-I(V. (fiv_)),

depend also upon the second partial derivatives of the mean flow drift and stream functions.

Thus, an accurate solution for the nonlinear steady background flow is a critical prerequisite

to properly determining the unsteady effects associated with inlet entropic and vortical
excitations.

4.3 Boundary-Value Problem for the Modified Potential

The complex amplitude of the unsteady potential (¢_) is determined as a solution of the

field equation

__ A-2 _¢
Dt Dt - fi-lv-(pV¢/) --_ fi--lv" (fiVR) . (4.14)
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This solution is subject to the following surfaceconditions:

VC'.n=[b_r/Dt-(r.V)VO].n, x e B,_; (4.15)

and

[/9_¢'] - 0 and [[V¢']]-n = 0 x C Wm; (4.16)
Dt

lift(re' - A-2_tqV¢)]] • n + [[fi]]v_ • n = [_][iwt + (VO. v)r. V](r. n)

+ (r. n)v. V([fi]]VO. r) and [¢']] = -r. n][V_]] • n, x e Shm,,_.

(4.17)

Equations (4.14)-(4.17) are obtained after substituting (4.10) into (3.6)-(3.11), and replacing

¢' by ¢' exp(iwt), 7_ by rexp(iwt) and D/Dt by D_/Dt = iw + VO- V. Finally, analytical

solutions are available [21] to describe the behavior of ¢' far from the blade row. These can be

matched to near-field numerical solutions and, therefore, serve to complete the specification

of the time-independent boundary-value problem for ¢'.

At this point, we have presented a relatively complete linearized unsteady aerodynamic

formulation to describe general (i.e., entropic, vortical and acoustic) perturbations of sub-

sonic and discontinuous transonic mean flows. Numerical methods for predicting the un-

steady aerodynamic response of subsonic and transonic cascades to structural and acoustic

excitations have been reported in Refs. [18, 19 and 21]. Methods for predicting cascade

response to entropic and vortical excitations are described in the following section of this

report. At present, the numerical solution procedures for the entropic and vortical gust

problems have only been developed and implemented for subsonic flows. The development

of such procedures for the transonic gust response problem remains, therefore, as a subject
for future work.
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5. Numerical Solution Procedures

The theoretical foundation for the linearized unsteady aerodynamic analysis has been es-

tablished. We will proceed to discuss the procedures used to evaluate the complex amplitudes

of the unsteady entropy (s), rotational velocity (v_), and source term [fi-lV. (_v_)] through-

out an extended blade-passage solution domain. The finite-difference numerical model used

to solve the boundary-value problem for the complex amplitude (¢_) of the unsteady poten-

tial has been described in previous work. Since the only changes to this model required for

the entropic and vortical gust problems are those needed to accomodate the source term in

the field equation (4.14) and rotational velocity effects in the analytical far-field solutions

for the unsteady potential [21], we will not repeat the description here, but simply refer the

reader to Refs. [11, 18 and 19] for the details.

5.1 Generation of the Streamline Grid

In section 4, it was shown that the unsteady entropy and rotational velocity can be

expressed in terms of the drift and stream functions, A and _, of the steady background

flow. For this reason it is convenient to use an H-grid in which one set of mesh lines are the

streamlines of the steady background flow for the numerical evaluation of these unsteady flow

variables. The first step in the grid generation process is to specify the grid point locations

on the boundary of the physical solution domain, i.e., a single extended blade-passage region

of finite extent as shown in Figure 3. The boundaries of this region are the upper and lower

surfaces of the blades, the upstream and downstream axial lines _ = _: and the upstream

and downstream mean-flow stagnation streamlines. The stagnation streamline locations are

determined from the solution for the nonlinear steady background flow.

The locations of the stagnation streamlines are found by particle tracing, i.e., by inte-

grating the equation
0x

-v, (5.1)
Or

using a variable-step, fifth-order, Runge-Kutta algorithm [24], from the leading and trailing

edges of a blade to the far upstream (_ = (_) and far downstream (_ = _+) boundaries. The

location of the leading-edge stagnation point is determined by curve fitting the blade profile

and the steady potential distribution along the blade using cubic splines. The stagnation

point is defined as the point on this curve at which the steady potential has a minimum

value, and is found by bisection. After integrating equation (5.1) from the leading-edge

stagnation and the trailing-edge points to the far-field boundaries, the calculated points on

the stagnation streamlines are curve fit using cubic splines.

Once the boundaries of the H-grid have been determined, the locations of the interior

points are found using an elliptic grid generation technique similar to that developed by

Thompson et al. [25]. An elliptic grid generator offers the advantages that relatively smooth

grids can be determined, and grids for complicated flow geometries, such as those associated

with cascades of thick, highly cambered blades, are easy to generate. Following Thompson

et al., the grid lines are described by the partial differential equations

v2z = p (5.2)
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and

V27-/= Q. (5.3)

The "axial" and "streamwise" grid lines correspond to lines of constant _ and 7-/, respectively.

The functions P and Q can be used to control the spacing and orthogonality of the grid

lines. In this investigation, however, we have chosen the function Q so that 7-/is the stream

function kDof the irrotational steady background flow, i.e., we set Q = V x V#.

Rather than solve equations (5.2) and (5.3) for E and • as functions of _ and r/, we invert

these equations to determine _ and rI as functions of E and _. It can be shown that

°_ _ °_ °_ D5 _'b-_-:_b-_ - _b-k-_ + _b¢_ - + Qb-_ (5.4)

and
02_ 02_ 02_

- 2_ + = -D 2 P_--__b--_ 0z0------__b-V + Q ' (5.5)

where D is the determinant of the Jacobian of the independent variable transformation,

(E, _) --+ (_,r/) , i.e.,

0_ Or/ 0_ Or/ (5.6)
D - 0E 0g_ 0qz 0-- '

and the coefficients c_,/_, and 5 are given by

= _ + _-_ ' _ - 0z 0¢ + 0_0---_' 5 = + (5.7)

The nonlinear partial differential equations (5.4) and (5.5) are solved numerically over a

rectangular region in E, k_-space, subject to Dirichlet conditions on _ and r] at the boundary.

The values of ( and r/ along the boundary of the rectangular domain are defined by their

values at the prescribed points along the boundary of the extended blade-passage physical

domain. Because the _, q2-grid is rectangular, difference approximations are easy to con-

struct. For example, if the spacings between the grid lines are constant (i.e., A_i = A-':,

A_j = Ak9), then the difference equation for the (-coordinate at the i,jth node has the
form

01i, j 1 _i,j (_i+l,j+l -- _i+l,j-1 -- _i-l,j+l -]- _i-l,j-1)AF2 (_i+l,j - 2_i,j -F _i-l,j) 2 AEA_

.jr. _"[i'J (_i,j+l -- 2_i,j Jr- _i,j-1) = --D2_,3 Pi,j "_ _i,j -_

i,j i,j

A similar equation describes the r]-coordinate at the i,jth node. In equation (5.8), it is

assumed that the transformed grid spacings, AEi and A@j, are constant. In the present

investigation, however, nonconstant transformed grid spacings are used to control the spac-

ings in the physical plane. For example, by choosing appropriate values of AEi and /k_I/j,

the streamwise and axial grid lines can be packed near blade and wake surfaces and near the

leading and trailing edges of the blades, respectively.
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The difference equations for ( and _/ are solved using a successive line over-relaxation

procedure in which the coefficients a, fl and 5, and the terms on the right-hand-sides of (5.4)

and (5.5) are lagged, i.e., they are computed just prior to each line over-relaxation. Also,

because the function Q is fairly expensive to compute, and because it is fairly insensitive to

small changes in _ and T/,'this function is updated only every tenth iteration.

A typical grid generated for a compressor cascade operating at an inlet Mach number

of 0.:3 and an inlet flow angle of 40.0 deg is shown in Figure 3. The blades are thick and

highly cambered, and the cascade has a gap-to-chord ratio, G, of 0.6 and a stagger angle @

of 15 deg. The steady flow, which was determined using the analysis of Ref. [22], is used

to generate the stagnation streamlines and to determine the function Q in (5.4) and (5.5).

For the grid shown in Figure 3, the function 7_ was set equal to zero. Note the clustering

of streamlines near the blade and wake surfaces and axial lines in the vicinity of the blade

leading and trailing edges, which is achieved by employing nonconstant rectangular grid

spacings, AEI and Aqj, in the transformed plane.

5.2 Evaluation of the Drift Function

Because a streamline mesh is used, the drift function can be evaluated by straightforward

numerical integrations of equation (4.1). The procedure is simply to specify the drift function

along the far upstream boundary _ = __, and then to evaluate this function along each

streamline using the second-order difference approximation

ri+l,j - r ,j (5.9)
= + 0.5 (Iv +x,jl + Ivi,jl)

Since the steady flow speed, V, appears in the denominator of the integrand in equation (4.1),

the drift function will be singular at flow stagnation points. Hence, for a blade having a blunt

leading edge this function will be singular along the entire surface of each blade and its wake.

The calculated drift and stream function contours for the the compressor cascade of

Figure 3 are shown in Figure 4. Note that, because of the manner in which the drift function

has been defined in (4.1), the drift function contours are orthogonal to the streamlines far

upstream of the blade row. This is not a requirement, but it does simplify the analytical

expressions (4.5) and (4.12) for the entropy and rotational velocity. Note also the singular

behavior near the blade and wake surfaces indicated by the drift function contours.

The derivatives of the drift and stream functions at a given grid point are determined

using the finite difference operators developed by Caspar and Verdon [18]. Because the drift

function is singular at blade and wake surfaces, one-sided difference approximations are used

to evaluate its derivatives at points on the first streamlines removed from these surfaces.

The derivatives of the drift function at the blade and wake surfaces are singular, but are not

required to evaluate v_ and fi-lV. (fiv_) at field points.

As noted previously, a numerical resolution of the linear, variable-coefficient, unsteady,

boundary-value problem that governs the velocity potential is required over a single extended

blade-passage region of finite extent. The field equation (4.14) must be solved in continuous

regions of the flow, subject to the boundary or jump conditions that are imposed at the mean

positions of the blade, wake and shock surfaces. Also, the unsteady near-field numerical

solution must be matched to far-field analytical solutions (see [21]) at finite axial distances
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(i.e., at _ = _:) upstream and downstream from the blade row. The numerical procedures

for determining ¢' are described in Refs. [11, 1S and 19].
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6. Numerical Results

Unsteady aerodynamic response predictions are given below to demonstrate important

features of the foregoing linearized analysis. The unsteady flows considered here are entirely

subsonic. Steady background flows have been determined using the methods of Ref. [22].

In each case a Kutta condition has been applied at blade trailing edges and therefore, only

inlet uniform flow information, e.g., M-oo and _/-oo, must be specified for the steady calcu-

lation. First-harmonic unsteady solutions were determined on an H-type mesh (see Figure

3) consisting of 120 "axial" lines and 30 mean-flow streamlines. These were packed near the

blade and wake surfaces and near the blade edges, respectively.

For the most part we have considered cascades consisting of blades that are constructed

by superposing the thickness distribution of a modified NACA four-digit series airfoil, i.e.,

T(x) = HT[2.969x 1/2 -- 1.26x -- 3.516x 2 + 2.843x 3 -- 1.036x4], 0 _< x _< 1 , (6.1)

on a circular-arc camber line. Here, HT is the nominal blade thickness, and the coefficient

of the x 4 term in (6.1) differs from that used in the standard NACA airfoil definition [26],

i.e., -1.015, so that the example blades close in wedge-shaped trailing edges. The camber

distribution is given by

C(x) = Hc - R+ [R 2 - (x- 0.5)_] 1/2 , 0 _< x _< 1 , (6.2)

where Hc (> 0) is the height of the circular-arc camber line at blade midchord and R =

(2Hc)-_(0.25 + H_) is the radius of this camber line. Thus, the surface coordinates of the

reference blade are given by

[X,Y]_s =[x_=O.bT(x)sinO, C(x)+O.bT(x)cosO], 0<x<l, (6.3)

where 0 = tan-l(dC/dx), and the superscripts + and - refer to the upper and lower surfaces
of the blade.

We will first apply the present analysis to flat-plate, HT = 0 and Hc = 0, cascades

in which the blade mean positions are aligned with the inlet free-stream flow direction,

i.e., O = f_-oo, and compare present response predictions with those based on Smith's [4]

classical linearized analysis. We will then consider cascades of uncambered NACA airfoils

and cascades of cambered, 6% thick NACA airfoils to study the effects of blade thickness

and mean loading on the unsteady aerodynamic response at a blade surface to an incident

vortical gust. Finally, we will examine the response of three more realistic configurations: a

compressor exit guide vane (EGV) consisting of thick, highly cambered blades (HT = 0.12,

He = 0.13), a high speed compressor cascade consisting of moderately thick and cambered

(HT = 0.06 and Hc = 0.05) blades, and a turbine cascade. As a representative turbine

configuration we have selected the fourth standard configuration of Ref. [27]. However, we

have extended the blade profiles defined in [27] so that our example turbine blades also close

in wedge-shaped trailing edges.

We are primarily interested in the linearized unsteady flows excited by vortical gusts, such

as those that arise, for example, from wakes off the blades of an adjacent upstream blade row.

If the "circumferential" spacing between the blades in the adjacent upstream row is GExc
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and if these blades move at velocity VExce n relative to the blade row under consideration,

then the interblade phase angle and temporal frequency of the fundamental or blade passing

vortical excitation are a = t%,_ooG = -27rG/GExc and w = -nn,_o_VExc = _rG-1VExc,

where nn,_oo = --27r/GExc is the circumferential wave number of this excitation. For the

present study, we will choose cr = --27r, w = 5 and vg = (1, 0) to describe a "standard"

vortical gust excitation. Here, vg is the complex amplitude of the gust velocity component

normal to the inlet free-stream flow direction at the point (x, y) = (0, 0). In particular, vg

is the amplitude at the leading edge of the reference blade that would exist if the incident

gust was convected through the blade row, without distortion, by the uniform inlet flow.

6.1 Flat-Plate Cascade

The example flat-plate cascade has a stagger angle (O) of 45 deg and a blade spacing (G)

of 1.0 and operates at three different inlet Mach numbers, i.e., M-oo = 0.3, 0.5 and 0.7. In

each case the inlet flow angle (f_-oo) is 45 deg and vortical excitations with vg = (1, 0) and

w = 5 are imposed far upstream of the blade row. Since the inlet free-stream flow direction is

aligned with the blade mean positions, the local steady Mach number, M(= M-oo), and flow

angle, f_(= fl-oo), are constants for the flat-plate flow fields. Predicted unsteady pressure-

difference distributions, Ap(x) = p[x, Ys(X)] -- p[x,y+(z)], acting on the reference (m = 0)

blade for the standard vortical excitation at a = -27r (-360 deg) are shown in Figure 5,

where the solid and dashed curves represent the results of the present and of Smith's analy-

sis, respectively. Recall that in the present analysis the unsteady potential (4.14) equation

contains the source term _-1_,. (_v_) and V¢'.n = 0 on blade surfaces, whereas in the

classical linearization the potential equation is homogeneous, and the normal component of

the irrotational velocity must cancel the normal component of the gust velocity at blade

surfaces. The results in Figure 5 show that the two analyses yield pressure-difference predic-

tions that are in very good agreement for M-oo = 0.3 and M-oo = 0.5, but the agreement is

not quite so satisfactory for M-oo = 0.7.

Similar results for unsteady flows driven by a prescribed blade translations, i.e., TO. =

hy exp(iwt)ey, normal to the mean positions of the blade chords are shown in Figure 6 for

an excitation with h v = (1,0), w = 5 and a = -27r. The unsteady flows are irrotational

and therefore, the unsteady potential equation is homogeneous. The agreement between

the pressure-difference predictions obtained from the present numerical analysis and Smith's

semi-analytical solution procedure is somewhat better than that for the vortical excitation,

but discrepancies still exist at the highest inlet Mach number. We suspect that the differences

between the present and Smith's solutions for M_oo = 0.7 occur because the computational

grid used in the numerical calculation was not dense enough to resolve the high wave number

acoustic response phenomena that are associated with high subsonic Mach numbers and high

excitation frequencies. Therefore, such differences should disappear if a mesh of sufficient

density is employed in the numerical calculation.

The unsteady lift, fv, responses at the reference blade of the flat-plate cascade operating

at M-oo = 0.5 to prescribed vortical excitations with va = (1,0) and w = 5 and to prescribed

blade translations with h v = (1, 0) and w = 5 are plotted versus interblade phase angle in

Figure 7. The excitations occur over interblade phase range extending from -37r (-540 deg)

to -_r (-180 deg). Abrupt changes in the lift response curves occur at a = -473.8 deg
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and -471.1 deg. The excitations at these phase angles produce resonant acoustic response

disturbances in the far field. The lift responses to the vortical excitations as predicted by

the numerical and semi-analytical solution procedures are in good agreement; however, this

agreement is not nearly as good as that between the lift responses to the blade translational

excitations, suggesting that the present numerical analysis still requires some improvements

so that the source term, fi-lV. (_v_), can be evaluated more accurately.

6.2 Effects of Blade Thickness and Mean Loading

We proceed to evaluate the present analysis by applying it to two families of cascade

configurations. For the first, ® = 45 deg, G = 1, the blades are uncambered (He = 0), but

the blade thickness varies from HT = 0 to HT = 0.12; for the second, the blade spacing,

G = 1, and thickness, HT ---- 0.06, are constant, but the height of the circular-arc blade

camber line and the cascade stagger angle vary in such a manner that the tangents to the

camber lines at the blade leading edges are aligned with the inlet free-stream flow direction,

i.e., (_ = _-oo - 8. The cascades in the first family operate at an inlet Mach number of 0.3

and an inlet flow angle of 45 deg; those in the second family, at an inlet Mach number of

0.5 and an inlet flow angle of 45 deg. The cascades in both families are subjected to the

standard vortical gust excitation at vg = (1,0), w = 5 and a = -27r.

The cascades in the first family have been studied to indicate the effects of blade thickness

on the unsteady aerodynamic response to a vortical gust excitation. It should be noted that

although the blades are uncambered and their chord lines are aligned with the inlet flow

direction, i.e., ® = f_-oo, there is a small mean or steady lift force acting on the blades of

these cascades for HT _ O. This force increases in magnitude, from 0 for HT = 0 to 0.062

for HT = 0.12, with increasing blade thickness. The exit Mach numbers (M+oo) vary from

0.3 for HT = 0 to 0.314 for HT = 0.12, and the exit flow angles (fl+oo), from 45 ° to 47.22 °.

The unsteady pressure-difference distributions along the reference blades of the cascades with

HT = 0, 0.04, 0.08 and 0.12 are shown in Figure 8. These results indicate that blade thickness

has only a limited impact on the unsteady aerodynamic response to a vortical excitation.

Indeed, the pressure-difference response for the cascade of 2% thick blades (not shown)

closely resembles that for the flat-plate (HT = 0) cascade. This result provides an important

check on the present analysis, indicating that the mathematical difficulties associated with

mean flow stagnation at blade leading edges have been successfully overcome.

The second cascade family, described above, has been studied to indicate the effects of

blade loading on the response of cascades to incident vortical gusts. Numerical calculations

were performed for cascades consisting of 6% thick blades with Hc = 0, 0.04, 0.08 and 0.12.

The cascade stagger angles corresponding to these values of He are ® = 45 deg, 36 deg,

28.4 deg and 22.6 deg, respectively. The calculated exit Mach numbers and flow angles are

0.515, 0.395, 0.346 and 0.328 and 46.2 deg, 31.9 deg, 18.6 deg and 6.9 deg, respectively.

The predicted values for the steady lift force acting on each blade are -0.036 for He = 0.,

0.260 for Hc = 0.04, 0.412 for Hc = 0.08, and 0.508 for Hc = 0.12. The steady Mach

number distributions along the blade surfaces are shown in Figure 9; the unsteady pressure-

difference responses to the standard vortical excitation, in Figure 10. The latter indicate

that the effect of mean blade loading, or mean flow turning, on the unsteady aerodynamic

response of cascades to incident vortical excitations can be significant.
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6.3 Compressor and Turbine Cascades

We turn now to more realistic cascadeconfigurations-- a compressorexit guide vane
(EGV), ahigh-speedcompressorcascade,and aturbine cascade.In eachcasewewill compare
the unsteady responseof the actual cascadeto a correspondingflat-plate cascadehaving
the sameblade spacingand operating at the sameinlet flow conditions. However,theflat-
plate bladesare staggeredso that their mean positions are aligned with the mean inlet
flow direction, i.e., O = f_-oo. Thus, the local steady Mach number, M = M-H, and flow

angle Ft = F/_oo, are constants for the flat-plate configurations. For each cascade we will

examine the behavior of the unsteady vorticity, source term and pressure throughout an

extended blade passage region. The source term is presented for its mathematical rather

than its physical significance. This term depends upon the manner in which the imposed

vortical gust is convected by the mean flow. An accurate numerical description of the source

term is crucial to the successful prediction of the unsteady pressure field excited by the

gust interaction. We will also examine the reference-blade pressure-difference responses that

result from the interaction between each blade row and the standard vortical excitation at

vg = (1,0), w = 5 and cr = -2_r, and the unsteady lift responses to vortical excitations at

vg = (1,0), w = 5 and -37r < a < -Tr.

Exit Vane Guide

The compressor exit guide vane (EGV) consists of thick, HT = 0.12, highly cambered,

Hc = 0.13, modified NACA airfoils. It has a stagger angle of 15 deg, a blade spacing of

0.6 and operates at a prescribed inlet Mach number and inlet flow angle of 0.3 and 40 deg,

respectively. The calculated exit Mach number, exit flow angle and mean lift force acting

on each blade are 0.226, -7.4 deg and 0.36, respectively. The steady Mach number contours

and Mach number distributions along a blade surface for this configuration are depicted in

Figure 11.

We will examine the unsteady response of the EGV cascade to incident vortical excitations

and compare it to that for the corresponding flat-plate cascade with O = f_ = 40 deg, G = 0.6

and M = 0.3. Contours of the real part of the complex amplitude of the unsteady vorticity,

source term and pressure for the EGV and flat-plate cascades are shown in Figures 12, 13

and 14, respectively, for the standard vortical gust excitation. The prescribed gust is severely

distorted as it is convected by the nonuniform mean flow through the EGV blade row. In

contrast, it is convected without distortion by the uniform mean flow through the flat-plate

blade row. Also, since the vorticity is convected at different mean velocities along the upper

and lower surfaces of the EGV blades, it is discontinuous across their wakes. The contours

shown in Figure 13 illustrate the rather strong variations in the source term, fi-lX7 • fiv_,

particularly for the EGV configuration, that can occur within an extended blade passage

solution domain. Finally, the pressure contours depicted in Figure 14 indicate that the

unsteady pressure behaviors associated with the EGV and flat-plate cascades are similar far

upstream, but differ substantially in the vicinity of the blade surfaces and downstream of
the blade row.

The pressure-difference responses along the reference blade of the EGV and flat-plate

cascades to the standard vortical excitation at vg = (1, 0), w = 5 and a = -27r are shown

in Figure 15. The unsteady lift forces acting on the reference blades of the two cascades
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are plotted versus interblade phase angle for vortical excitations at vg = (1, 0), w = 5 and

-3_r < a < -_r in Figure 16. The excitations at a = -404.2 deg and -293.9 deg produce

resonant acoustic response disturbances far upstream and far downstream of the flat-plate

cascade and far upstream of the EGV; those at a = -414.3 deg and -308.8 deg produce

such response disturbances far downstream of the EGV. The results in Figures 15 and 16

indicate the relative importance of nonuniform mean flow phenomena on the local and global

unsteady aerodynamic response at a blade surface for cascades subjected to incident vortical

excitations. It should be noted that the unsteady lift acts in the direction of the positive

y-axis (see Figure 1), and this is inclined at different angles relative to the axial flow direction

for the EGV (O = 15 deg) and flat-plate (® = 40 deg) cascades. Also, the the flat-plate lift

distributions in Figure 16 are in good agreement With Smith's results, except for interblade

phase angles lying in the range -540 deg < a < -404.2 deg, where the out-of-phase, i.e,

Ira{f y}, lift responses predicted by the two analyses are similar qualitatively but show small

quantitative differences.

Compressor Cascade

The high-speed compressor cascade consists of cambered, with Hc = 0.05, modified

NACA 0006 airfoils (i.e., HT = 0.06). This cascade and the corresponding flat-plate cascade

operate at high-subsonic inlet conditions, i.e., M-oo = 0.7 and g/-oo = 55 deg, and have

a gap-chord ratio, G, of unity. The NACA 0006 cascade has a stagger angle of 45 deg.

The flat-plate blades are aligned with the inlet free-stream flow direction and are therefore

staggered at an angle of 55 deg. The exit Mach number and flow angle for the NACA 0006

cascade are 0.446 and 40.17 deg, and the mean lift acting on each blade is 0.348. The steady

Mach number contours and Mach number distributions over a blade surface for the NACA

0006 configuration are shown in Figure 17.

Unsteady flow predictions similar to those given in Figures 12-15 are presented in Fig-

ures 18-21 for the standard vortical gust. The unsteady lift responses to vortical gusts at

v9 = (1,0), w = 5 and -540deg < cr < -180deg are shown in Figure 22. Excitations

at _r = -494.6 deg and cr = -494.4 deg produce resonant acoustic response disturbances

far upstream of the NACA 0006 and flat-plate cascades and far downstream of the flat

plate cascade. Excitations at a = -518.9 deg and _r = -420.6 deg produce such response
disturbances far downstream of the NACA 0006 cascade.

The vorticity and source term contours shown in Figures 18 and 19 indicate that the

distortion of the vortical gust by the NACA 0006 cascade is much less severe than it is for

the EGV (see Figures 12 and 13). Although the mean lift forces acting on the blades of

the two cascades are nearly the same, the overall turning [_2+oo - _-oo[ of the mean flow is

much greater for the EGV (47.4 deg) than it is for the NACA 0006 compressor (14.8 deg).

The pressure contours (Figure 20) for the NACA 0006 and flat-plate cascades also show

much more similarity than those in Figure 14. Some differences between the NACA 0006

and the flat-plate pressure fields exist just upstream of the blade rows, where relatively large

amplitude unsteady pressures are associated with the NACA 0006 configuration.

As shown in Figures 21 and 22, the unsteady pressure-difference responses of the NACA

0006 and flat-plate blades to the standard vortical excitation (or = -360 deg) differ along

the blade surfaces, but the unsteady lift responses to vortical excitations at vg = (1,0),
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w --= 5 and -540 deg < a < -180deg are very similar, except for interblade phase angles

lying in the range -540 deg < a < -490 deg. In the latter range, the numerical calculations

for the flat-plate cascade do not agree with Smith's predictions. Because of this and the

fact that the lift responses at a = -540 deg and e = -180 deg predicted by the numerical

analysis for the flat-plate cascade are not identical, we believe that the numerical results for

the NACA 0006 and the corresponding flat-plate cascades are incorrect for -540 deg < a <

-490 deg. Improvements to the present analysis are therefore required to permit a more

accurate evaluation of the source term over a broad range of interblade phase angles.

Turbine Cascade

As a final example we consider the turbine cascade proposed as the fourth standard

cascade configuration in [27] and a flat-plate cascade operating at the same inlet free-stream

conditions. These cascades operate at an inlet Mach number of 0.19 and an inlet flow angle

of 45 deg, and they have a blade spacing G of 0.76. The turbine cascade has a stagger angle

of 56.6 deg and the flat-plate blades are staggered at @ = f_ = 45 deg. The calculated

exit Mach number and flow angle for the turbine are 0.49 and 72.0 deg, respectively, and

the mean lift acting on each blade is -2.09. The turbine cascade turns the steady flow

through an angle [f_+oo - f_-oo[ of 27 deg. The predicted steady Mach number contours and

blade-surface Mach number distributions are shown in Figure 23.

Local unsteady response predictions for the turbine and flat-plate cascades subjected to

the standard vortical gust excitation are shown in Figures 23 through 27, and the lift re-

sponses to incident vortical gusts with vg = (1, 0), w = 5 and -540 deg < a < -180 deg, in

Figure 28. Excitations at _r = -396.8 deg and a = -311.7 deg produce resonant acoustic

response disturbances far upstream of the turbine cascade and far upstream and far down-

stream of the flat-plate cascade. Excitations at a = -389.0 deg and at a = -279.2 deg

produce such response disturbances far downstream of the turbine cascade.

As shown in Figure 24, the standard vortical gust is highly distorted as it is convected

through the turbine blade row. In addition, the source term (Figure 25) associated with this

gust has relatively large gradients within the passage and downstream of the turbine blade

row. These give rise to high unsteady pressures (Figure 26) along the suction surface of the

blades and downstream of the turbine blade row. As indicated by the results in Figure 25

the unsteady pressure fields associated with the turbine and the corresponding flat-plate

cascades differ substantially. As a consequence, there are significant differences between the

unsteady pressure-difference responses at the reference turbine and flat-plate blade surfaces

for a = -27r (Figure 27), and between the unsteady lift responses over a significant range

of interblade phase angles (Figure 28). The unsteady response predictions for the turbine

and flat-plate cascades illustrate rather dramatically the substantial impact that mean flow

turning can have on the unsteady aerodynamic response of cascades to incident vortical gusts.

We should add that, for this example, the flat-plate lift response predicted by the present

analysis and the Smith analysis are in good agreement over the entire range, -37r _< cr _< -re,

of interblade phase angles considered.
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7. Concluding Remarks

A linearized analysis for predicting the unsteady pressure response of a cascade of airfoils

to external aerodynamic excitations has been presented. The unsteady flow is regarded as

a small perturbation of a nonuniform isentropic and irrotational steady background flow.

Goldstein's splitting, [16,17], along with a recent modification introduced by Atassi and

Grzedzinski [20] have been used to decompose the linearized unsteady velocity into irrota-

tional and rotational parts, leading to equations for the linearized unsteady entropy, rota-

tional velocity, and velocity potential that are coupled only sequentially. The entropic and

rotational velocity fluctuations are described in terms of the mean-flow drift and stream

functions, and the potential fluctuation is governed by an inhomogeneous convected wave

equation in which the source term depends on the rotational velocity field. In this report

the analytical and numerical techniques used to determine the linearized unsteady flow have

been described and demonstrated through a series of numerical examples.

Numerical studies have been conducted to evaluate the capabilities of this linearized un-

steady aerodynamic analysis and the LINFLO computer code for predicting the response

of cascades to incident vortical gusts. For this purpose we have considered the following

configurations: flat-plate cascades, cascades of uncambered NACA 00XX airfoils, cascades

of cambered NACA 0006 airfoils, a cascade of thick, highly cambered blades that is represen-

tative of the exit guide vane (EGV) of a high-pressure compressor, a high-speed compressor

cascade consisting of cambered NACA 0006 blades, and a turbine cascade. In each case

we have taken as a standard gust a unit-amplitude vortical excitation at reduced frequency

co = 5 and interblade phase angle a - 2_r.

The results obtained using the present analysis were found to be in very good agreement

with the results of Smith's [4] analysis for flat-plate cascades operating at low (M = 0.3) and

moderate (M = 0.5) Mach numbers, but the agreement for flat-plates operating at high sub-

sonic Mach number (M = 0.7) was not satisfactory. It appears that the grid currently used

in the numerical unsteady calculation is not adequate for resolving the high wave number

acoustic response phenomena that is associated with high steady-flow Mach numbers and

high excitation frequencies. Results for the cascades of symmetric NACA 00XX airfoils show

reasonable trends with varying blade thickness, and indicate that blade thickness has only

a limited impact on the response of a cascade to incident vortical gusts. The blade thick-

ness study also indicates that the present analysis overcomes the mathematical difficulties

associated with unsteady vortical perturbations of potential mean flows containing leading

edge stagnation points. The numerical results for the cascades of cambered NACA 0006

airfoils show that the effect of mean blade loading, or mean flow turning, on the unsteady

aerodynamic response of cascades to vortical excitations can be significant.

More detailed gust response predictions have been presented for the compressor exit guide

vane (EGV), the NACA 0006 compressor cascade, and the turbine cascade. These include

vorticity and pressure contours that illustrate the manner in which a vortical gust is distorted

as it is convected, by the mean flow, through a blade row, and the unsteady pressure response

that is excited by the interaction of this gust with the blading. The numerical results for

the compressor and turbine cascades serve to demonstrate the current capabilities of the

present unsteady analysis and LINFLO computer code for predicting the unsteady pressure
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response of cascades operating under high mean load conditions and at high subsonic inlet
Mach number.

The analysis described in this report provides very efficient predictions of the pressure

response of realistic cascade configurations to unsteady aerodynamic and structural excita-

tions. Therefore, this analysis should be useful for turbomachinery aeroelastic and aeroa-

coustic design investigations. Improvements are still needed so that high wave number

acoustic response phenomena can be resolved and the potential-equation source term can be

accurately determined over broad ranges of excitation frequency and interblade phase angle.

Also, in future work, the composite-mesh solution capability of Ref. [19] should be applied

to the gust response problem so that entropic and vortical perturbations of discontinuous

transonic mean flows can also be analyzed. Finally, the LINFLO code should be coupled to

the new steady potential code, currently being developed under a joint NASA Lewis/UTRC

research effort, so that the unsteady pressure response of cascades that are representative

of those found in the Space Shuttle Main Engine, i.e., cascades that operate at low Mach

numbers but induce very high mean-flow deflections, can be analyzed.
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List of Symbols

All physical parameters listed below are dimensionless. Lengths have been scaled with

respect to blade chord, time with respect to the ratio of blade chord to a reference flow

speed, density and velocity with respect to a reference density and flow speed, respectively,

pressure with respect to the product of the reference density and the square of the reference

flow speed, and entropy with respect to a reference value of the fluid specific heat at constant

pressure. The reference values of the fluid properties are taken to be their upstream free-

stream values. If an equation or figure is given after a symbol description, it is the equation,

figure or figure caption in which the symbol first appears.

Roman

N

,4

ao

B

C

D

d"r

dT

e

.T

F

A

G

G

Vector function of X - V_oot, Equation (4.6).

Complex amplitude of ,4, Equation (4.9).

Speed of sound in mean or steady background flow, Equation (3.3).

Constant which describes mean flow behavior in the vicinity of a leading-

edge stagnation point, Equation (4.13).

Mean position of references blade surface, Equation (2.1).

Blade camber distribution function, Equation (6.2).

Jacobian determinant for the independent variable transformation

(E, _) _ (_,r/), Equation (5.4).

differential tangent vector, Equation (4.2).

Differential length, Equation (4.1).

Unit vector, Equation (4.2).

Arbitrary scalar or vector function of X - V_oot, Equation (4.4).

Complex function of the mean-flow stream function, Equation (4.11).

Complex amplitude of first-harmonic unsteady lift, Figure 7.

Cascade gap vector (= G%), Equation (2.1).

Blade spacing in "circumferential-" or r/-direction; circumferential

wave length of an incident disturbance.
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Hc

tit

h_

i

M

m

n

7),

P

p

7_

R

r

Sh

8

T

t

V

z¢

Q

Height of circular-arc camber line at blade midchord, Equation (6.2).

Nominal blade thickness, Equation (6.1).

Complex amplitude of blade translation normal to chord line,

Figure 6.

imaginary unit, Equation (2.1).

Mach number in steady background flow, Equation (3.3).

Blade number index, Equation (2.1).

unit normal vector, Equation (3.7).

Grid control function, Equation (5.2), (5.3).

Pressure in mean or steady background flow, Equation (3.3).

First-order unsteady pressure, Equation (2.4).

Complex amplitude of first-harmonic unsteady pressure, Equation (2.4).

Surface (blade, wake or shock) displacement vector, Equation (2.1).

Radius of circular-arc camber line, Equation (6.2).

Complex amplitude of surface displacement vector, Equation (2.1).

Shock mean position, Equation (3.10).

First-order unsteady entropy, Equation (2.2).

Complex amplitude of first-harmonic unsteady entropy, Equation (2.2).

Blade thickness distribution function, Equation (6.1).

Time, Equation (2.1).

Unsteady velocity, Equation (3.1).

Mean or steady velocity, Equation (3.1).

First-order unsteady velocity, Equation (3.1).
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v

½

VR, VR

X

X, Y

x

x,y

W

Greek

a, 5

7

Ap

A

£

¢

O

t_

E,7_

Complex amplitude of first-harmonic unsteady velocity, Equation (3.19).

Complex amplitude, at x = 0, of incident gust velocity component

normal to inlet free-stream direction, Figure 5.

Rotational component of first-order unsteady velocity,

Equation (3.5), (4.10).

Complex amplitude of first-harmonic unsteady rotational velocity,

Equation (3.15), (4.12).

Lagrangian coordinate vector, Equation (4.3).

Surface coordinate, Equation (6.3).

Position vector, Equation (2.1).

Cartesian coordinate along, normal to blade chord, Figure 1.

Wake mean position, Equation (3.8).

Coefficients of (2, _) ---+ (_, rl) coordinate transformation, Equation (5.7).

Fluid specific heat ratio, Equation (3.3).

Complex amplitude of first-harmonic unsteady pressure difference, Figure 5.

Drift function, Equation (4.1).

Small parameter (<< 1).

First-order unsteady vorticity, Equation (2.3).

Complex amplitude of first-harmonic unsteady vorticity, Equation (2.3).

Cascade stagger angle, Figure 1.

Slope of blade camber line, Equation (6.3).

Wave number vector, Equation (2.2).

Independent variable in computational space, Equation (5.2), (5.3).

32



O"

X

tI/

f_

03

Mathematical

b/Dt

b,,,/Dt

Cascade axial, "circumferential" Cartesian coordinate, Figure 1.

Density in steady background flow, Equation (3.3).

Interblade phase angle, Equation (2.1).

Unit tangent vector, Equation (3.7).

Velocity potential of the steady background flow, Equation (3.2).

Velocity potential of the irrotational component of the first-order unsteady

velocity, Equation (3.6), (4.10).

First-order pressure-less or convected potential, Equation (4.10).

Complex amplitude of the first-harmonic unsteady velocity potential,

Equation (3.17), (4.14).

Velocity potential associated with acoustic excitation, Equation (3.16).

Velocity potential associated with the far-field acoustic response and the

far downstream vortical fluctuation, Equation (3.16).

Coefficient that describes the axial variation of the first-order unsteady

potential or pressure in the far field, Equation (3.17).

Stream function for mean or steady background flow, Equation (4.2).

Steady flow angle, Figure 1.

Temporal frequency, Equation (2.1).

Mean-flow convective derivative operator, Equation (3.4).

Convective derivative operator for first-harmonic unsteady flow,

Equation (4.14).

Imaginary part of { }, Figure 5.

Real part of { }, Equation (2.1) and Figure 5.
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V

®

[]

Subscripts

B

EXC

I

i,j

m

n

N, T z,

Ref

+

2]2O(3

Superscripts

:F

Gradient operator, Equation (3.2).

Tensor or dyadic product, Equation (4.6).

Change in a flow quantity at a surface of discontinuity, Equation (3.8).

Reference blade surface, Equation (6.3).

Excitation generated by adjacent upstream blade row.

Incident pressure or irrotational velocity disturbance, Equation (2.4).

Mesh point indices, Equation (5.8).

Blade number index, Equation (3.7).

Shock number index, Equation (3.10).

Direction of vector component; N -- normal to inlet free-stream flow direc-

tion, Equation (4.1); T -- along inlet free-stream direction, Equation (4.3);

z -- out from the page, Equation (4.2); 7/-- the cascade circumferential

direction, Figure 1.

Reference wake location.

Along streamline, Equation (4.1).

Axial location at a finite distance upstream from blade row, point of intersec-

tion (__, 7/_) of axial line _ = __ and reference blade stagnation streamline.

Axial location at a finite distance downstream from blade row.

Far upstream/downstream value of an unsteady flow quantity,

Equation (2.2); inlet/exit free-stream value of a steady flow quantity, Figure 1.

Time-dependent flow quantity, Equation (2.2).

Lower, upper surface of blade, Equation (6.3).

Modified first-order velocity potential or rotational velocity, Equation (4.10).
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Figure 1. Two-dimensional compressor cascade.



Figure 2. Unsteady excitations: blade motion; incident vortical and entropic disturbances

from upstream; and incident acoustic disturbances from upstream and downstream.
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Figure 4. Drift and stream contours for two-dimensional steady cascade flow.
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Figure 5. Effect of Mach number on the unsteady pressure-difference response of a flat-

plate cascade with f_ = O = 45 deg and G = 1 subjected to an incident vortical gust with

vg = (1,0), w = 5 and _ = -27r: (a) in-phase component (real part) of Ap, (b) out-of-phase

component (imaginary part); - - - Smith analysis (Ref. 4), -- present analysis.

39



40 I M = 0.7 --"%

.N,

10

Re{Ap}

-20

-50"

-8O

(a)

Im{Ap}

4O

(b)

10" M = 0.7

-8O
0.0 0:2 0:4 0:6 0:8 1.0

X

Figure 6. Effect of Much number on the unsteady pressure-difference response of a fiat-

plate cascade with _2 = O = 45 deg, G = 1 undergoing blade bending vibrations with

h r = (1,0), w = 5 and a = -27r: (a), (b), - - - and -- as in figure 5.
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Figure 7. Unsteady lift versus interblade phase angle for a flat-plate cascade with M = 0.3,

= ® = 45 deg and G = 1: (a) unsteady lift due to incident vortical gusts with vg = (1,0)

and o., = 5; (b) unsteady lift due to blade bending vibrations with hy = (1,0) and w = 5;

- - - Smith analysis (Ref. 4), -- present analysis.

41



5.0

f (a) .......... HT =0

HT = 0.04

3.51_ -HT = 0.08

0.5 _--_--_'_-_ .... --7. _._--- '_ " - -- -- _ - --___U--. _--.

-i01
• I I i I

1.0"

-0.5-

Im{Ap}

-2.0-

-3.5-

(b)

I

0:2 0:4 0:6 0:8 1.0
X

Figure 8. Effect of blade thickness on the unsteady pressure-difference response of NACA

00XX cascades with M-oo = 0.3, f_-oo = 45 deg, O = 45 deg and G = 1 subjected to an

incident vortical gust with vg = (1,0), w = 5, and a = -2_r: (a) and (b) as in figure 5.
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Figure 9 Effect of mean blade loading on the steady Mach number distribution along a

blade surface for cascades of cambered NACA 0006 airfoils; - - - upper surface of blade,
-- lower surface.
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Figure 10. Effect of mean blade loading on the unsteady pressure-difference response

for cascades of cambered NACA 0006 blades subjected to an incident vortical gust with

vg = (1,0), w = 5 and _r = -2_r: (a) and (b) as in figure 5.
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Figure 11. Mach number contours and blade surface Much number distributions for a

steady flow with M-oo = 0.3 and Ft_oo = 40 deg through the EGV cascade (O = 15 deg,

G = 0.6, HI = 0.12 and Hc = 0.13).
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Figure 12. Contours of the real part of the unsteady vorticity for the EGV and the corre-

sponding fiat-plate (M = 0.3, f_ = 0 = 40 deg, G = 0.6) cascades subjected to an incident

vortical gust with vg = (1,0), w = 5 and a = -2_r.
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Figure 13. Contours of the real part of the source term for the EGV and the corresponding

flat-plate cascades subjected to an incident vortical gust with vg = (1, 0), w = 5 and c_ = -2_r.
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Figure 14. Contours of the in-phase component (real part) of the unsteady pressure for the

EGV and the corresponding flat-plate cascades subjected to an incident vortical gust with

v_ = (1,0), w = 5 and a = -2_r.
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Figure 15. Unsteady pressure-difference response for the EGV and corresponding flat-plate

cascades subjected to an incident vortical gust with vg = (1, 0), w = 5 and _ = -27r: (a) in-

phase component (real part); (b) out-of-phase component (imaginary part); --- flat-plate

cascade, -- EGV cascade.
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Figure 16. Unsteady lift versus interblade phase angle for the EGV and corresponding

flat-plate cascades subjected to incident vortical gusts with vg = (1,0) and w = 5: (a), (b),

- - - and _ as in figure 15.

5O



:!:::::

0.88

1.0

0.8"

M

0.6-

0.4-

Pressure (lower) surface

0.2
0.0 0:2 0:4 0:6 0:8 1.0

0.36

X

Figure 17. Mach number contours and surface Mach number distributions for steady flow

with M-oo = 0.7 and ___ = 55 deg through the cambered NACA 0006 cascade (O = 45

deg, G = 1.0, HT = 0.06 and H¢ = 0.05).
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Figure 18. Contours of the real part of the unsteady vorticity for the cambered NACA 0006

and the corresponding flat-plate (M = 0.7, _ = ® = 55 deg, G = 1.0) cascades subjected to

an incident vortical gust with v_ = (1, 0), w = 5 and _r = -2_r.

52 ••



+23

-23

Figure 19. Contours of the real part of the source term for the cambered NACA 0006 and

the corresponding flat-plate cascades subjected to an incident vortical gust with Vg = (1,0),
w = 5 and a = -27r.
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Figure 20. Contours of the in-phase component (real part) of the unsteady pressure for the

cambered NACA 0006 and the corresponding flat-plate cascades subjected to an incident

vortical gust with vg = (1, 0), w = 5 and cr = -2_r.
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Figure 21. Unsteady pressure-difference response for the cambered NACA 0006 and cor-

responding flat-plate cascades subjected to an incident vortical gust with vg = (1, 0), w = 5

and a = -2rr: (a) in-phase component (real part); (b) out-of-phase component (imaginary

part); - - - flat-plate cascade, -- NACA 0006 cascade.
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Figure 22. Unsteady lift versus interblade phase angle for the cambered NACA 0006 and

corresponding flat-plate cascades subjected to incident vortical gusts with vg = (1,0) and

w = 5: (a), (b), - - - and -- as in figure 21.
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Figure 23. Mach number contours and surface Mach number distributions for steady flow

with M-oo = 0.19 and f___ = 45 deg through the turbine cascade (O = 56.6 deg and
G -- 0.76).
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Figure 24. Contours of the real part of the unsteady vorticity for the turbine and the
correspondingflat-plate (M = 0.19, _ = 0 = 45 deg, G = 0.76) cascades subjected to an

incident vortical gust with vg = (1, 0), w = 5 and a = -2_r.
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Figure 25. Contoursof the real part of the source term for the turbine and the corresponding

flat-plate cascades subjected to an incident vortical gust with vg = (1, 0), w = 5 and _r = -2_r.
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Figure 26. Contours of the in-phase component (real part) of the unsteady pressurefor
the turbine and the correspondingflat-plate cascadessubjected to an incident vortical gust
with vg = (1,0), w = 5 and o- = -21r.
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Figure 27. Unsteady pressure-difference response for the turbine and corresponding flat-

plate cascades subjected to an incident vortical gust with vg = (1,0), w = 5 and _r = -2_r:

(a) in-phase component (real part); (b) out-of-phase component (imaginary part); ---

flat-plate cascade, -- turbine cascade.
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Figure 28. Unsteady lift versus interblade phase angle for the turbine and corresponding

flat-plate cascades subjected to incident vortical gusts with Vg = (1,0) and w = 5: (a), (b),

- - - and -- as in figure 27.
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